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The spatial structure of neutral atmospheric 
surface-layer turbulence 
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Risca National Laboratory, 4000 Roskilde, Denmark 

(Received 7 July 1992 and in revised form 21 February 1994) 

Modelling of the complete second-order structure of homogeneous, neutrally stratified 
atmospheric boundary-layer turbulence, including spectra of all velocity components 
and cross-spectra of any combination of velocity components at two arbitrarily 
chosen points, is attempted. Two models based on Rapid Distortion Theory (RDT) 
are investigated. Both models assume the velocity profile in the height interval of 
interest to be approximately linear. The linearized Navier-Stokes equation together 
with considerations of ‘eddy’ lifetimes are then used to modify the spatial second-order 
structure of the turbulence. The second model differs from the first by modelling the 
blocking by the surface in addition to the shear. The resulting models of the spectral 
velocity tensor contain only three adjustable parameters : a lengthscale describing the 
size of the largest energy-containing eddies, a non-dimensional number used in the 
parametrization of ‘eddy’ lifetime, and the third parameter is a measure of the energy 
dissipation. 

Two atmospheric experiments, both designed to investigate the spatial structure 
of turbulence and both running for approximately one year, are used to test and 
calibrate the models. Even though the approximations leading to the models are very 
crude they are capable of predicting well the two-point second-order statistics such 
as cross-spectra, coherences and phases, on the basis of measurements carried out at 
one point. The two models give very similar predictions, the largest difference being 
in the coherences involving vertical velocity fluctuations, where the blocking by the 
surface seems to have a significan! effect. 

1. Introduction 
Knowledge of the turbulent atmospheric wind field has become important in the 

calculation of dynamic loads on some spatially extended structures, such as large 
bridges, towers and wind turbines. For many of these structures the cross-spectra of 
wind fluctuations at different points on the structure are paramount in the estimation 
of dynamic wind loads. Under some simplifying circumstances the spectrum of the 
modal forces on the structure can be written as weighted integrals of the cross-spectra. 
According to Davenport (1977) the weights include modal amplitude and drag or lift 
coefficients at different points of the structure. For more complicated structures with 
moving parts or in the case of nonlinear structural responses there is not a similarly 
simple relation between spectral characteristics of the flow and the forces. However, 
in these cases also the cross-spectra are important for the description of dynamic 
loads. 

For some structures the streamwise wind component of the turbulent flow is 
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important while for others the vertical velocity fluctuations give rise to loads. There 
may even be structures where combinations of velocity fluctuations in different 
directions at different points are of importance. It is therefore desirable to have a 
unified description of the complete two-point second-order structure of the turbulence, 
i.e. cross-spectra of arbitrary wind components at two arbitrarily chosen points. 

Many experiments have been carried out in order to measure the spectral character- 
istics of the turbulence at the lowest = 100 m of the atmosphere (Panofsky & Dutton 
1984). Most reported observations concern one-point spectra and there is a general 
agreement on the shapes of these, except at the lowest frequencies. In this paper we 
shall investigate two models of the spectral velocity tensor, Gij (k) ,  for horizontally 
homogeneous, atmospheric surface-layer turbulence for neutral stratification, which 
prevails at high wind speeds. 

The basis of the models is rapid distortion theory (RDT), which implies a lineariza- 
tion of the Navier-Stokes equation. The models combine RDT with considerations 
about eddy lifetimes. The difference between the two models is that the first assumes 
a uniform shear, while the second in addition to the effects of shear also tries to take 
into account the blocking by the surface by inhomogeneous RDT (Hunt & Graham 
1978; Gartshore, Durbin & Hunt 1983; Lee & Hunt 1989, see figure 2). The first 
model is abbreviated US, the second US+B. 

Owing to the difficulties in solving the Navier-Stokes equation the physical and 
mathematical approximations are quite crude. Therefore, the models have been 
calibrated and checked with data from two large experiments. In the first, turbulence 
was measured over water in connection with estimation of wind loads on what is 
going to be the world’s largest suspension bridge (Mann, Kristensen & Courtney 
1991 ; Larsen 1992). The second experiment investigated turbulence structure over 
a rural area in Denmark in connection with wind loads on horizontal-axis wind 
turbines (Courtney 1988). 

In $2  we define the notation, discuss symmetries of different tensor models and 
briefly describe the isotropic tensor with the von Karman energy spectrum on which 
the models in $3  are based. Then in $ 3  we present the tensor models, which have 
only three parameters: a lengthscale, a constant connected to the ‘lifetime’ of the 
eddies, and a measure of the energy dissipation. Finally, in $4, we compare the two 
models with data by adjusting the three parameters to fit the one-point spectra and 
predicting the measured two-point cross-spectra. 

2. Preliminaries 

isotropic tensor which are needed. 
We present the basic definitions and notation together with some properties of the 

2.1. Definitions 

The turbulent velocity field 6(x) is assumed to be incompressible, and the fluctuations, 
u(x)  = I?@) - U(x), about the mean wind field, U(x), are, except for the model in $ 3.3, 
homogeneous in space. Therefore the covariance tensor 

(2.1) Rij(Y) = (ui(x)uj(x + Y)) 

where ( 
From (2.1) it follows that 

) denotes ensemble averaging, is only a function of the separation vector Y .  

R j j ( ~ )  = R j i ( - ~ ) .  (2.2) 
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For the components of the position vector in space, x = (XI, x2, x3), we shall often 
use (x, y, z )  or (Ax, Ay, Az) to denote position differences and for the components of 
the velocity fluctuations, u = (u1, u2, ug), we sometimes use (u, u, w). Some assumption 
of homogeneity is unavoidable if we want the mathematics to be relatively simple. In 
this paper we model the Fourier transform of (2.1), the spectral uelocity tensor : 

@ij(k) = - / Rij(r) exp(-ik . u)dr, 

where J dr = J-", J-", J-", drldr2dr3. Denoting complex conjugation by *, we see that 
(2.2) implies that Gij = @ji, i.e. the tensor is Hermitian. 

Not only the Fourier transform of the covariance tensor is of interest but also 
the Fourier transform of the velocity field itself. Since the stochastic velocity field is 
not square integrable over all physical space we can represent the field in terms of a 
generalized stochastic Fourier-Stieltjes integral : 

where the integration is over all wavenumber space (Batchelor 1953). From homo- 
geneity of the velocity fluctuations it follows that the stochastic vector field Z(k) has 
uncorrelated increments, i.e. (dZi(k')dZ;(k")) = 0 for k' # k". The process 2 is 
connected to the spectral tensor by 

which is valid for infinitely small dkit. The representation (2.4) may also form the 
basis for a numerical simulation of a turbulent wind field assuming the stochastic 
vector field Z(k)  to be Gaussian and to have independent increments. A good 
introduction to the spectral tensor and its physical significance may be found in 
Tennekes & Lumley (1972). 

An alternative to the spectral tensor is the set of all cross-spectra 

which contains the same information and which is most often used in practical 
applications, such as estimation of loads on structures. The connection between the 
components of the spectral tensor and the cross-spectra is 

where J dkl  = J-", J-", dkzdk3 (Lumley 1970, chapter 4). 
Besides the cross-spectrum the coherence or spectral coherence 

where Fi(kl) = Xii(kl, 0,O) (no summation) is the one-point spectrum, is often reported 

t Other widely used ways to represent the velocity field are either as a Fourier series assuming 
the field to obey cyclic boundary conditions on a box in space much larger than the scales of interest 
(Townsend 1976), or assuming the velocity field to vanish outside a large box. The mathematical 
differences of these approaches are not of interest here. 
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FIGURE 1 .  Coordinate system with the linear shear profile (2.13) shown along the z-axis. The vector 
u is the transversal component at the point (0,O) and w is the vertical component at (x ,y )  of a 
turbulent velocity field. The vectors u' and w' are the same components after a rotation of 180" 
about the y-axis of the field. 

in the literature. Sometimes the coherence is defined as the square root of the 
expression above. The phase, qij, is defined as 

(no summation) (2.9) 

and we note that from (2.7) and Gij = @Ji  we get q,j(kl ,  Ay, Az) = -qji(kl, -Ay, -Az). 

Xij(k1, Ay,Az) = IXij(k1, Ay, A z ) ~  exp (iqij(k1, Ay, Az)) 

According to the definitions used here the (co-)variances can be expressed as 

( ~ j ~ j )  = (u~(x)u~(x)) = Xij(k1)dkl = @ij(k)dk. (2.10) 1: J 
With these conventions the (cross-)spectra xij(kl) = xij(kl, 0,O) are often called two- 
sided. 

2.2. Symmetries 
From symmetries of the spectral tensor it is possible to determine if some cross- 
spectra are real, purely imaginary or zero. Furthermore, they can be exploited in the 
numerical calculation of Xij(k1) from @i,(k). 

We define the (second-order) symmetry group of a turbulent field as the group of 
reflections and rotations of the space which leaves the statistics of the turbulent field 
unchanged. More precisely the symmetry group of a (stochastic) turbulent field is the 
subgroup of transformations T in the group of all orthonormal transformations in R3 
for which the second-order statistics of ui(x)  are the same as TijUj(Tx) (summation 
over repeated indices is understood). For the covariance tensor this means that 

Rij(r) = (tli(x)uj(x + v ) )  

= (Tj[U[( T x )  T j k U k (  Tx + Tr ) )  = Ti[&( Tr)  T j k  (2.11) 

for transformations in the symmetry group. Since the absolute value of the determi- 
nant of T is one we get, using the definition (2.3), for the spectral tensor 

@,j(k)  = Til@lk(rk)T,k, (2.12) 

where T* is the adjoint of T (i.e. the transposed matrix). 
For the models developed in $ 3  the mean wind field is assumed to be well 
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represented by a uniform shear with the flow in the xl-direction: 

(2.13) 
d U  
dz 

U(x)  = (Z(x)) = z-el, 

and the fluctuations are distorted by this sheart. The following symmetries apply to 
this situation. Firstly, for both the US and US+B models, there must be left-right 
symmetry (since we ignore the rotation of the of the Earth). Secondly, the US model 
is unaffected by a rotation of 180" about the xt-axis and thus, ignoring the effect of 
gravity, the fluctuating field has this symmetry. Therefore, the symmetry group for 
the US model consists of four elements: 

{/,(a p 1  8 ),(; H p, ) , - I }  
(2.14) 

where I is the identity matrix. From the last element, -I, it follows from (2.12) and (2.3) 
that @ is real and since it is Hermitian it is also symmetric. From the definition (2.6) 
and (2.11) we get, using the third element of the symmetry group, that xij(kl,y,O) is 
purely imaginary for {i, j }  = { 1,2} or {2,3} and real otherwise. The case {i, j }  = {2,3} 
is shown in figure 1. The statistics of the turbulent field must be unchanged after a 
rotation of 180" about the y-axis, i.e. (uw) = (u'w') or &(x,y,O) = -&(-x,y,O). 
From this relation and (2.6) it follows that the cross-spectrum ~23(kl,Ay,O) is purely 
imaginary or equivalently that q23(kl, Ay, 0) = &90°. An example of a measured phase 
is shown in figure 9. Similarly, using the second element of the symmetry group one 
can prove that xij(kl,O,Az) is zero for {i, j }  = { 1,2} or {2,3}. 

It should be noted that the third (and thereby also the last) element in the symmetry 
group is in fact only approximately valid in the neutral atmospheric boundary layer 
since the velocity profile is not linear but rather logarithmic because of the presence 
of the surface of the Earth. We therefore expect a model based on this symmetry 
group only to be valid for eddies of linear dimension smaller than the length over 
which the shear changes appreciably. A theory based on a logarithmic profile would 
be too complicated mathematically for us to deal with. (See Hunt et al. 1989 for an 
analysis of correlations and lengthscales in this case.) As a compromise we introduce 
the US+B model in $3.3 which also has uniform shear but breaks the 180" symmetry 
about the y-axis by modelling the blocking by the surface. 

Related to the nonlinear velocity profile a non-zero skewness of the w-component 
would also show that the 180" rotation about the y-axis is not a perfect symmetry. 
Measurements of S,  = (w') /CT; in the neutral surface layer from the Kansas experi- 
ment gives values between 0.1 and 0.2 (Izumi 1971) with higher values to the unstable 
side and lower values around zero to the stable side. We measure the skewness, S,, 
to be 0.27 and -0.12 for the Great Belt Coherence Experiment ($4.2) and LAMEX 
($ 4.3), respectively. Large-eddy simulations (LES) of the neutral boundary layer give 
small negative skewnesses close to the surface (C.-H. Moeng, 1993, private communi- 
cation); however, as pointed out by Moeng, in the surface layer LES may not resolve 
the motions sufficiently to predict the skewness. These limitations of LES have been 
discussed in Schmidt & Schumann (1989). 

The group of symmetries of axisymmetric turbulence is all rotations about the axis 
of symmetry together with reflections in planes containing the axis and in the plane 

t For neatness, we have here chosen U(0)  = 0. We could have chosen, say, U(0)  = Uoq; it is 
just a matter of defining of the origin of the z-axis. The theories presented in $ 3  (US) only depend 
on the shear, not on the mean wind speed at the origin. 
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perpendicular to the axis. A model of axisymmetric turbulence has been developed by 
Chandrasekhar (1950) (also described in detail by Sreenivasan & Narasimha 1978) 
and if the axis is vertical it is thought to give a good representation of convective 
turbulence without shear. However, vertical axisymmetry implies 0: = 0; which is 
not observed for atmospheric surface-layer turbulence at high wind speeds. 

Inspired by the axisymmetric tensor Kristensen et al. (1989) proposed a spectral 
tensor model with the following symmetry group: 

0 0  (7 Y :1) 
(2.15) 

By introducing 7 independent parameters defining various functions in their model 
Kristensen et al. could fit Fl(kl) ,  F2(kl) and F3(kl), the measured one-point spectra 
of along wind, transversal and vertical wind fluctuations, respectively, fairly well and 
thereby also giving the right proportions of the variances and the lengthscales of 
all three components. The calculated coherences, however, generally overestimated 
the measured coherences when the distance between the anemometers was not small 
compared to the height above the surface. Furthermore, reflection in the horizontal 
plane which is an element in (2.15) implies ~&1,0,0) = 0 and qll (kl ,O,Az)  = 0 
which is not supported by data. 

2.3. Taylor’s hypothesis 
Usually Taylor’s hypothesis is used to convert measured time series into ‘space series’. 
When the shear is zero the mean speed at all points in space is the same and the 
hypothesis can be straightforwardly applied to interpret two-point time spectra as 
space cross-spectra. When the shear is not zero, however, Taylor’s hypothesis is not 
so easily applicable. Consequently it will be used heuristically as follows. Consider 
two points x1 and x2 with x2 - x1 perpendicular to U(x). Simultaneously measured 
time series C(x1,t) and C(x2,t) are interpreted as the wind field along two lines in 
space: 4 x 1  - Umt,O) and C(x2 - U,t,O), where Um = (U(x1)  + U(x2))/2. The more 
direct use of Taylor’s hypothesis, i.e. interpreting the time series as C(x1 - U(xl) t ,O) 
and C(x2 - U(x,)t,O), would obviously be wrong and it would violate the assumption 
of homogeneity. 

2.4. The isotropic tensor with the von Khrman spectrum 
The symmetry group of isotropic turbulence is simply all rotations and reflections in 
R3. As argued in $2.2 the spectral tensor may be assumed to be real and symmetric 
because point reflection with respect to the origin, -/, is an element in the symmetry 
group. In the theory of isotropic turbulence the mean field is assumed to be constant, 
i.e. no shear. Furthermore, if the flow is assumed to be incompressible the spectral 
tensor can be written as 

(2.16) 

where E(k)dk is half the variance of the wind velocity fluctuations whose magnitude 
of the wave vector is in the range ( k ,  k + dk), as can be seen by integrating Gii(k) over 
a spherical shell with constant k .  

Von Karman (1948) has suggested the following form of the energy spectrum: 

(2.17) 
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where E is the rate of viscous dissipation of specific turbulent kinetic energy and L is 
a lengthscale. The empirical value of M is approximately 1.7. Using (2.7) to derive the 
one-point spectra, we get 

and for the v- and w-spectra: 

3 2 3L-2 + 8 k ;  
110 (L-2 + k : ) v  

Fi(k1) = -MEJ for i = 2,3. 

(2.18) 

(2.19) 

All the one-point cross-spectra are zero. 
The lengthscale, L, in the one-point spectra can be calculated from Fi(0). In the 

atmosphere, however, the spectra at the very lowest wavenumbers vary considerably 
owing to non-stationarity and large-scale phenomena, which are not of interest here. 
A better way of characterizing L is by the maximum of klFi(k l ) .  Denoting the 
wavenumber at maximum of klFi(k1) by 1/Lmax,i we get 

f 
Lmax,1 = (5> L = 0.816L 

and 
3 
L 

L = 0.561L for i = 2,3, 
(6 + 3 8 ) 3  

Lmax,i = 

(2.20) 

(2.21) 

so the maximum of klFi(k l )  occurs when kl is slightly larger than 1/L. 

(2.10): 
The variances can easily be calculated from either (2.17), (2.18) or (2.19) using 

(2.22) 

All the co-variances are of course zero. 
The advantage of the isotropic turbulence model is that it describes the spectra and 

cross-spectra well for high frequencies or small distances compared to the lengthscale 
of the turbulence. Furthermore, the cross-spectra can be calculated analytically in 
terms of Bessel functions for the von Karman energy spectrum, (2.17), or even more 
simply for the -: power law spectrum (Harris 1970; Kristensen & Jensen 1979). 

The property of isotropic turbulence that the variances o:, 0,' and 0; must all be 
equal is not supported by data. In fact G$/G: = 0.25 and of/.,' = 0.54.7 depending 
on the averaging time (usually = 10 minutes for meteorological measurements). 
Isotropy also implies that ~ 1 3  must be zero which is certainly not the case at the lower 
frequencies (see the dot-dashed line in figure 7). 

3. The velocity tensor for shear flow 
In this section we sketch the development of two models of the spectral velocity 

tensor for neutral atmospheric surface-layer turbulence (see Figure 2). We have 
argued that by neglecting the rotation of the Earth and the effect of gravity and by 
assuming a linear mean velocity shear, the statistics of the flow has only the four 
elements of (2.14) as a symmetry group. Our plan is to use RDT to estimate the 
effect of shear on the turbulence. RDT gives an equation for the evolution or the 
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Y X  Uniform shear (US) Uniform shear + blocking (US + B) 

FIGURE 2. Sketch of the investigated models. ( a )  Both models are based on isotropic turbulence 
with the von Kirmin energy spectrum (Q 2.4). (b)  The effect of shear is modelled by rapid distortion 
theory in $3.2. (c ) :  In addition blocking by the surface is modelled by ‘inhomogeneous rapid 
distortion theory’ (Lee & Hunt 1989, see 0 3.3). 

‘stretching’ of the spectral tensor. If the initial conditions can be represented by the 
isotropic von Karman tensor, (2.16), with the energy spectrum (2.17), then the tensor 
@,,(k, t )  will become more and more ‘anisotropic’ with time. 

The linearization implied by RDT is unrealistic, however; at some point (in time) 
the stretched eddies will break up. We shall use this picture to make @Jk,  t )  stationary, 
i.e. not dependent on time. We postulate that eddies of linear dimension = 1kI-l (or 
more precisely the Fourier modes) are stretched by the shear over a time which is 
proportional to their lifetime. The lifetime z is 

z ( k )  K ~ - 4 k - 3 ,  (3.1) 

pertaining, at least in the inertial subrange, to eddies with wave vector magnitude 
k = Ikl (Landau & Lifshitz 1987, $33). 

The basic postulate of this paper is that the stationary spectral tensor 

@Z,W = @ l ,  (k ,  z (k ) )  (3.2) 

describes the surface-layer turbulence well. The combination of RDT and scale- 
dependent eddy lifetimes has previously been used by Derbyshire & Hunt (1993). 

Maxey (1982) has described a similar model with the exception that the lifetime z 
was assumed to be constant for all wavevectors. (zdU/dz is called ‘the equilibrium 
value of the effective distortion strain’ by Maxey 1982.) Maxey’s model gives a 
reasonable, but not perfect, description of the ratios among a:, 002, a; and (UW) 

for turbulent shear flows. There are two grave drawbacks when the model of 
Maxey (1982) is used to calculate spectra: 

(i) The uw-cross-spectrum in the inertial subrange decays as kYJ whereas Wyn- 

gaard & Cotd (1972) observe and give scaling arguments for k y 3 .  
(ii) For typical values of the effective distortion strain the model predicts F J F ,  = 7 

in the inertial subrange whereas it should be FU/Fw = 
The models presented here do not suffer from these shortcomings. 

Several alternative expressions for the eddy lifetime outside the inertial subrange 
will be discussed in $3.1. Only an outline of the derivation of the Uniform Shear 
model (US) will be given in $3.2 since the basic equations of rapid distortion theory 
have been given by Townsend (1976). The modification of the model by blocking by 
the surface (US+B) is given in $3.3. 

5 

7 

(see figures 7 and 10). 
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kL 
FIGURE 3. Eddy lifetimes as functions of the magnitude of the wave vector. The lifetimes 

given by (3.3) give the most realistic results. 

3.1. Eddy lifetimes 
At scales larger than the inertial subrange (3.1) is not necessarily valid. We construct 
an alternative model for the ‘eddy lifetime’ assuming that the destruction of an 
eddy with size k-’ is mainly due to eddies comparable to or smaller than k-l. The 
characteristic velocity of these eddies may be expressed as = (J”E(j~)dp)~,  and we 
simply assume the lifetime to be proportional to the size k-’ divided by this velocity: 

z(k) cc k-’ ( E(p)dp)-’ 

(3.3) 
k-3 fork --t 00 )I-; cc { k-’ fork + O  ’ 

cc k-f [#I ( j , a ; j ; - ( k L ) - 2  1 17 4 

where we have chosen E as the von Karman energy spectrum (2.17) and where is 
the hypergeometric function. 

Comte-Bellot & Corrsin (1971, equation 99) give another lifetime model which has 
the right asymptotic behaviour for k -+ 00, the ‘coherence-destroying diffusion time’ : 

zD(k) cc k-2 [Am ~-~E(p)dp]  -’ 
7 (3.4) 

k-3 fork +co 
k-2 fork --+ 0 

4 17 7 
cc k-3 [2F1 ( j, ; ; -(kL)-2 

which was constructed as the square of the eddy size divided by a k-dependent 
‘turbulent viscosity’. 

Further, the inverse ‘eddy-damping rate’ 

k-f fork + co 
k-i fork + O  

TE(k) cc (k3E(k))-’ a (3.5) 

is used by Lesieur (1987) in eddy-damped quasi-normal theories of turbulence as a 
characteristic nonlinear relaxation time. 

All these lifetime models are shown in figure 3 normalized such that they coincide 
in the inertial subrange. It turns out that 0,” becomes infinite using (3.4) or (3 .9 ,  while 
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(3.1) and (3.3) give reasonable results. It also turns out that the spectra calculated 
from (3.3) fit the data better than (3.1) for which reason (3.3) is used in the rest 
of this paper, Some support for (3.3) may be found in Panofsky et al. (1982) who 
measured eddy 'response times' of eddies in the neutral atmospheric surface layer. 
Also Kristensen & Kirkegaard (1987) were compelled to use (3.3) rather than (3.4) 
or (3.5) in their theoretical model of the growth of a puff in a turbulent fluid. 

It is convenient to write (3.3) as 

where r is a parameter to be determined. 

3.2. The uniform shear model 
The flow field is decomposed into a mean and fluctuating part 

IT= u + u ,  (3.7) 
where U is given by (2.13). When appropriate we shall use the more general 
U i ( x )  = x j a U i / a x j ,  where a U i / a x j  is a constant tensor, instead of (2.13). The 
Navier-Stokes equation for an incompressible fluid may be written as 

assuming the kinematic viscosity v constant and neglecting gravity and the rotation 
of the Earth. Upon elimination of the pressure by taking the divergence on both 
sides of (3.8) and after decomposition in means and fluctuations according to (3.7) we 
drop the nonlinear and viscous terms and Fourier transform the resulting equation. 
Defining the 'average total derivative' of the velocity as 

aui h i  aUj aui + u.- = - + x & - -  
Dt at ' a x j  at axk Bxj 

and interpreting the rate of change of wavenumber, dkkldt, by 

~u~ aui -- _ -  

the Fourier representation of the average total derivative of the velocity field may be 
written as 

where we have implicitly defined D/Dt acting on a function of wavenumber and 
time. Combining this expressions with the linearized and Fourier-transformed version 
of (3.8) we get 

-- DdZi(k' t ,  = - dU { -dil + 
Dt dz 

(3.11) 

which is the basic rapid distortion equation for shear flow. The differential equa- 
tions (3.9) and (3.11) are easily solved given the initial conditions k(0) = ko = 
(kl, k2, k30) and dZ(k0,O). Instead of time, t, we shall use the non-dimensional time, p, 
defined as 

dU 
dz 

p = -t. (3.12) 
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First (3.9) is solved using the mean flow (2.13) giving 

R(t) = ( k l , k 2 , k J )  where k3 = k3o - p k l .  (3.13) 

The solution to (3.11) is then 

1 0  
dZ(k,B) = [o 1 k ] dWo,o), 

0 0 k i / k 2  
(3.14) 

where 

l l  = bl - ?c2] ,  r 2  = k C 1  + c2] 
with 

and 

(3.15) 

(3.16) 

(3.17) 

The equations (3.13) and (3.14) give the temporal evolution of individual Fourier 
modes. 

Given the initial second-order statistics @ij(ko,O) = @$(ko) as the isotropic von 
Karman tensor, (2.16), with energy spectrum, (2.17), we then have an explicit expres- 
sion for Gij(k, t )  (using (2.5)). 

To make a stationary model we use (3.6) and (3.2) discussed in the beginning of 
this section, i.e. we substitute t with z given by (3.6). For the 33-component we get 

(3.18) 

where @$: refers to the isotropic von Karman tensor and E to the energy spectrum 
(2.17). The other components become 

and 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

The equations (3.18) to (3.23) with (3.6) constitute the uniform shear model (US). 
These equations have two differences from the expressions of Townsend (1976) for 

plane shearing of homogeneous turbulence. The first is the elimination of time by 
(3.6) and the second and related difference is that we do not use the turbulent viscosity 
of Townsend, which would make the decay time for all eddies equal, independent 
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of their sizes. (There are, however, also two typographical errors in (3.12.4) of 
Townsend (1976): in the innermost brackets in the the expression for Qll ,  k20 should 
be changed into k30; the expression for Q13 should be divided by k;.) 

3.3. The eflect of blocking by the surface 
The US model presented in $3.2 has the symmetry group (2.14). This implies for 
example that the one-point cross-spectrum of longitudinal and vertical fluctuation 
x,,(kl) is real and that xvw(k1, Ay,  Az = 0)  is purely imaginary, i.e. &,(kl, Ay,  Az = 0)  = 
+90°. As seen from figure 10(b) Im(xuw(kl)) is in fact negative, and 4vw(kl ,  Ay,  Az = 0)  
is systematically different from &900 for low wavenumbers (see figure 9b). This 
means that the deviation from the reflection symmetry in the y-axis has measurable 
consequences. In this section we shall modify the US model by incorporating the 
effect of blocking by the surface which will break this reflection symmetry. The 
physical assumptions in this section are crude, especially for the atmospheric flows 
under consideration, but are made to illuminate effect of blocking in a tractable way. 

We follow the ideas of Lee & Hunt (1989): they analyse by RDT how homogeneous 
turbulence in a uniform shear is distorted when a rigid surface at z = 0 is suddenly 
introduced at time p = 0. As in the US model we ignore viscosity so the only effect of 
the surface is to block vertical velocity fluctuation. The blocked velocity field uB(x, p)  
is written as uB = u + us, where u(x, p )  is the homogeneous velocity field from the US 
model and us obeys w s ( x , y , O , p )  = -w(x,  y,O,/3), such that wB = 0 on the surface, 
and us -.+ 0 for z -.+ co. 

We no longer have homogeneity in the vertical direction and it is appropriate to 
use Fourier transforms in the two horizontal directions. The two-dimensional Fourier 
transform of the homogeneous velocity field ui(x)  from the US model thus becomes 

dZi(kl, k2, z ,  p)  = l3 dZieik3', (3.24) 

where x3 denotes integration over all the k3 and dZi is given by (3.14). 

instant ( p  = 0) and has the form 
Hunt (1973) and Hunt & Graham (1978) show that us is irrotational at the initial 

dZ?$(kl, k2, z ,  0) = -e-zK l3 dZ3(k, 0) (3.25) 

and 

dZf(kl,k2,z,O) = dZ3(k,O) for i = 1,2, (3.26) 

where K = (k: + k l )  '. From the momentum equation Gartshore et af. (1983) derive 

D/DpV2wS = 0 

for a linear shear which implies 

dZf(k1, kz, z ,  p)  = -e-zK dZ3(k, p)  = -e-"dZ?3(kl, k2,0, p )  (3.27) L3 
(see also Durbin 1978). 

The other two components of the velocity field may be found from the first two 
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components of the curl of the linearized momentum equations 

D aws a v S  
avs and Dp(z-g) D aus Dp (ay  - z) = ax 

as it has been done by Lee & Hunt (1989). The results are 

where 
k2ki k2 

Pl(z) = ~ Q ( z )  and P 2 ( z )  = -7Q(~). 2lc 
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(3.28) 
avs 
aY 

- -- 

(3.29) 

(3.30) 

The function Q is given by 

Q(z) = eik3’ eKr [ E l ( ~ z  + ik30z) - EI(KZ + ik3z)] I 
- e-Kz [2niH(--k3k30) + E l ( - ~ z  + i k 3 0 ~ )  - EI(-KZ + iklz)]}, (3.31) 

where H is the Heaviside function ( H ( x )  = 1 for x > 0 and 0 for x < 0) and El is 
the exponential integral function. 

Using (3.24), (3.27) and (3.29) and eliminating the time dependence by (3.2) the 
spectral tensor for the blocked flow now becomes a function of the two horizontal 
wave vectors and two heights above the surface: 

q k l ,  k2, z1, z2) = 
((d3i(kl,k2,~1) + d3f(kl,k2,zl))* (dTj(kl,k2,~2) + d3?(kl,k2,~2))) 

dkl dkz 
(3.32) 

from which all spectra and cross-spectra can be derived. As an example the 11- 
component becomes 

@f1(k1,k2,z1, z2) = @ll(k)eik3(z2-Z1) s-: 
ikl + - {(I + ~ ~ ( ~ ~ ) ) e - ~ 3 ~ l e - ~ ~ 2  - (1 + ~1(zl))*e’3~2e-~~1} @13(k) 

(1 + pl(zl))’(l + Pl(Z2))@33(k)dk3. 

K 
+ k: e-K(zl+r2) 

(3.33) 
K* 

Although being more complicated than the US model, the US+B model does not 
contain more adjustable parameters since the distance to the surface z is known. 

3.4. Properties of the sheared velocity tensors 
We shall now investigate the basic properties of the sheared velocity tensors, (3.18) 
to (3.23) and (3.32). The only four (co-)variances which are not zero, i.e. o:l = 4.2, 
0i2 = a:, ~ ~ 3 2 ~  = u: and (uw),  are calculated numerically by (2.10) and are shown in 
figure 4(a) for the US model as functions of r .  The model exhibits the ordering 
0,” > 0,” > 0: and a negative co-variance of u and w as observed in neutral flows over 
homogeneous terrain in the atmosphere. In figure 5(a) the (co-)variances from the 
US+B model (0 3.3) for r = 3.5 are shown. It is seen that o: and ( U W )  are attenuated 
strongly close to the surface. This is not consistent with surface-layer scaling where 
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FIGURE 4. Properties of the uniform shear model as functions of the parameter r : ( a )  (co-)variances 
divided by the isotropic variance (2.22); (b) lengthscales of (cross-)spectra defined by (3.34) divided 
by L. 

(UW) is approximately constant. However, the US+B model may be able to model 
the surface-layer turbulence within a horizontal slab where (uw) is not varying too 
much. 

Another characteristic feature of the one-point (cross-)spectra is the extremum of 
klFi(k1) or klRe(X&)). Assuming isotropy this could be found analytically ((2.20) 
and (2,21)), but in the sheared case the extremum must be found numerically by 
integrating (2.7) with Ay = Az = 0. Defining 

Lmax,i l/kmax,i, (3.34) 

where kmax,i is the solution to 

we get the ordering Lmax,l r Lmax,Z r Lmnx,3 for the US model as seen from figure 4(b), 
which is in at least qualitative agreement with experiments. The lengthscales of the 
US+B model are strongly attenuated close to the surface as seen from figure 5(b). 

4. Experimental validation 
To test the tensor models described in 9 3  our strategy is as follows: 

(i) We determine the three parameters L, r and asf of each of the models from 
the four non-zero spectra measured in one point, namely F,(kl), F,(kl) ,  Fw(k l )  and 
F,,(kl) = Re (xuw(kl)) .  (In the case of the model in 6 3.3 Im(Xuw(kl)) is also non-zero.) 

(ii) Then we predict all two-point cross-spectra or coherences. 
(iii) Finally, we compare the predicted and measured two-point cross-spectra. 
The easiest way to extract the parameters from the measured spectra would be to 

estimate the lengthscales, defined as the reciprocal of the wavenumber that extremizes 
k l F ( k l ) ,  and then determine r and L from figure 4(b) in case of the US model. The 
measured variances could then be used the estimate as: from figure 4(a) and (2.22), 
or alternatively the parameter could be determined from limk,+Q) k: F1 (kl ) which for 

5 
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FIGURE 5. The effect of blocking on the (co-)variances (a)  and lengthscales (b )  as function of 
distance to the surface normalized by the unblocked values. The lifetime parameter r is 3.5. See 
figure 4 for labels to the curves. 

i = 1 is &a&$ and for i = 2,3 is gas$, see (2.18) and (2.19), for which the limits still are 
valid in the sheared case because the distortion tends to zero for large wavenumbers 
according to (3.1). There are, however, several reasons not to proceed in that way. 
Firstly, because the time series available are of limited length the estimated spectra 
appear ‘ragged’ and the global extrema are greatly influenced by random spikes in the 
spectra. Secondly, the measured variances depend on the filtering by the instruments 
in the high-frequency end and on large-scale phenomena in the low-frequency end, 
which can be caused by small departures from neutral stratification. We do not want 
to model these very low-frequency phenomena. 

Instead we find the parameters by performing a X2-fit of the models to the data. In 
other words we minimize 

where N is the number of wavenumbers in the estimated spectra. A subscript t means 
theoretical model values calculated by (2.7) with Ay = Az = 0, using the tensor 
models described in 0 3. The o2 are the variances of the spectral estimates at the given 
wavenumber, which will be discussed below. 

4.1. Time series analysis 

The spectra are estimated by dividing the time series into a number, n, of ‘ensembles’ 
of equal duration. Each segment is Fourier transformed and the spectrum is the 
average of the absolute square of the Fourier transform over all the ensembles. Cross- 
spectra are the ensemble average of Fourier amplitude of the first time series times 
the complex conjugate of the second. The coherence is estimated as the absolute 
square of the cross-spectrum divided by the product of the estimated spectra, and the 
phase is the argument of the complex cross-spectrum, in accordance with (2.8) and 
(2.9), respectively. 

Under the assumption that the time series is long compared to the timescale of the 



156 J .  Mann 

spectrum L/  U, the relative standard deviation of the spectral estimate is 

and for the cross-spectrum 

(Koopmans 1974). Often the spectra are block averaged over, say, n b  consecutive 
frequencies or wavenumbers in which case the relative standard deviation becomes 
(nbn)-t. 

As an example the spectra in figure 7 are made on basis of time series of length 6 h 
= 21600 s, which are divided into 27 pieces of 800 s. The relative standard deviation 
is thus 27-4 = 19% at the lower wavenumbers and smaller at higher wavenumbers, 
where block averaging is applied. 

If we use (4.2) and (4.3) in the x2-fit, (4.1), the data will be closely fitted at the 
high wavenumbers but may be fitted poorly at the lower wavenumbers. In practice 
we have found that constant relative standard deviations give more satisfactory fits. 

The statistics of the estimated coherences are more complicated. Kristensen & 
Kirkegaard (1986) have analysed the problem in depth. We shall use their results 
derived under the assumption that the segments of the time series are independent 
of each other. Let coh, denoted the coherence estimated as described above from n 
segments of two time series having the true coherence, coh. The (ensemble) average 
of this stochastic variable is unfortunately not the true coherence, coh, but 

(coh,) = (4.4) 

with a1 given by 

n - 1  
n 

a1 = 1 -- -(1 -coh)"2Fl(n,n;n+ 1;coh). (4.5) 

It can shown that (coh,) > coh, i.e. the coherence is on average or systematically 
overestimated, and that lim,,,(coh,) = coh. For the number of segments we 
have used for the estimation of the coherence (2 144) the overestimation is almost 
insignificant. For example (COh144) = 0.5017 for coh = 0.5 and (COh144) = 0.0168 for 
coh = 0.01. 

Kristensen & Kirkegaard (1986) found the ensemble variance of the coherence 
estimate to be 

2 Var(coh,) = a2 - al, 
where 

a2 = 1 - (1  - coh)"(n - 1) 

(4.6) 

n - 2  
n 

zF1 (n + 1, n ; n + 2; coh) - - ZFl(n,n;n + 1;coh)) (4.7) 

which has the property that limn+,, Var(coh,) = 0. 

'goodness' parameter 
In order to assess the success of the prediction of the coherence we define a 

(4.8) 

which is the ratio of the actual integrated scatter of the data around the predicted 

G = - ,  ocoh 

ccoh,t 
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RGURE 6. The mast array on Sproge, viewed from SSE. The tiny dots at the top of the 
masts are the omni-directional sonic anemometers. 

coherence, gcoh, to the theoretically expected scatter, Ocoh,t. The integrated scatter is 

. N  

where coh,(ki) is the coherence estimated from n segments of the time series at the 
wavenumber ki ,  and (cohn,t(ki)) is the theoretically predicted coherence with the small 
overestimation added caused by the finite number of degrees of freedom according 
to (4.4). N is the number of wavenumbers taken into the comparison with data. The 
expected scatter for a perfect theory is 

. N  

(4.10) 

where the variance of the predicted coherence is given by (4.6). For a perfect theory 
the value of G should be close to one. 

Finally, we shall also use an approximate expression for the variance of the phase 
estimate from Kristensen & Kirkegaard (1986) : 

1 - coh 
Var( cp) = [l - (1  - cob)"-'] . 

2(n - 1) coh 
(4.11) 

4.2. The Great Belt Coherence Experiment 
The construction of the world’s largest suspension bridge connecting two islands of 
Denmark, Funen and Zealand, is about to begin. The suspension bridge will have a 
main span of 1624 m and the 27 m wide girder deck will rise almost 70 m over the 
waters of the Great Belt. The girder will be aerodynamically shaped and a large part 
of the dynamic force on it arises from the turbulence of the wind. The cross-spectrum 

F L M  273 6 
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Fit of the model spectra (smooth lines) to the data (ragged lines) from the 
Experiment. The US model is shown in (a), US+B in (b) .  Since Im(xUw) = 0 
only shown in (b ) .  The values of the model parameters are given in table 1. 

Great Belt 
for the US 

of vertical velocity fluctuations xww(kl, Ay, 0) which give rise to lift forces on the girder, 
and also xuu, are of importance for the estimation of dynamic loads on the bridge. 
Riser National Laboratory was therefore asked to perform an experiment to measure 
and model the relevant cross-spectra or coherences for the design basis of the Great 
Belt Bridge. 

4.2.1. Description of the experiment 
In order to conduct the coherence measurements a 70 m high mast was erected 

40 m from an existing mast on the easterly spit of Sproger, an island in the midst 
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Great Belt LAMEX 

US US+B US US+B 

L (m) 61 100 42 67 
r 3.2 3.8 2.6 3.4 
RE: (mis-2) 0.11 0.105 0.095 0.092 

TABLE 1. Parameters obtained by fitting models to the data. US: Uniform shear model ($3.2), 
US+B: Uniform shear + blocking effects ($3.3). Compare with figures 7 and 10. 

A y  = 15 m A y  = 32.5 m A y  = 41.5 m 

Components US US+B US US+B US US+B 

uu 1.5 2.1 2.3 1.8 3.7 2.8 
uv 2.0 2.1 1.7 3.0 2.0 3.3 
ww 3.0 3.1 3.8 3.4 4.4 2.9 
UU 1.1 1.1 1.5 1.2 1.8 1.5 
uw 4.1 3.3 3.9 2.4 3.7 2.2 
uw 1.2 1.0 1.4 1.2 1.1 1.4 

TABLE 2. The ‘goodness’, G, of the coherence prediction given by (4.8). Compare with 
figures 8 and 9. A perfect prediction has G = 1. 

of the Great Belt. A 15 m long horizontal boom was mounted symmetrically at 
the top of the new mast so that the whole construction has the form of a letter ‘T’. 
A Kaijo-Denki DAT-300 omni-directional sonic anemometer was installed at each 
end of the boom and at the top of the old mast, providing 15.0, 32.5 and 47.5 m 
horizontal separations between the three co-linear instruments. The mast array is 
shown in figure 6. 

The masts had other instruments to measure velocity and temperature profiles in 
order to determine the stability and to cross-check the sonic anemometers. 

We obtained one year of excellent data from which we can calculate lateral coher- 
ences with unsurpassed precision. More details about the experiment including correc- 
tion for flow distortion by the sonic anemometers may be found in Mann et al. (1991). 

4.2.2. Comparison with data 

To test the models we have selected a six hour time series. This series is chosen 
because the wind direction is virtually perpendicular to the instrument line and the 
wind speed, which is fluctuating around 22.3 ms-l at 70 m above the sea, was the 
largest for that wind direction during the experiment. The few other runs that were 
perpendicular to the instrument line and had high wind speeds are analysed in Mann 
et al. (1991). The upstream over-water fetch is uninterrupted for more than 20 km. 
One-point spectra are calculated as described in 94.1 and are shown twice in figure 7. 

The parameters of the models are found by minimizing (4.1). Keeping in mind 
that all four non-zero one-points spectra are fitted simultaneously with only three 
parameters the fits for both models are very satisfactory. 

The coherences are now predicted by performing the integral (2.7) numerically and 
using the definition of coherence, (2.8). The numerics of a fast evaluation of (2.7) 
are described in Mann et al. (1991). In table 2 the goodness, G, of the predictions 
of all possible combinations of velocity components at the three different horizontal 

6-2 
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FIGURE 8. Measured (dots) and predicted coherences (solid lines, US; dashed lines, US+B) at all 
horizontal separations from the Great Belt. The rightmost plot at the top is cohll(kl,l5 m,0). 
The dotted lines are the isotropic inertial-range coherences, i.e. coherences valid for very small Ay 
(Harris 1970; Kristensen & Jensen 1979). Compare with table 2. 

distances for both models are shown. To get an idea of the meaning of G table 2 
should be compared to figure 8, where the measured and predicted coherences for 
some component combinations are plotted. 

There is generally a good agreement between measurements and predictions. One 
of the poorer predictions in figure 8 is by the US model of COh33(k1,47.S m,O). In 
this case G = 4.4 as seen from table 2 and the US+B model obviously gives a better 
prediction with G = 2.9. Generally, there are otherwise not very large differences 
between the model predictions. Large departures from the isotropic inertial-subrange 
coherences are seen at separations as small as Ay = 15 m. 

As an example of coherence between different components of the wind field we 
have shown coh,, in figure 9(a) which is small but significantly larger than zero. The 
corresponding phase is shown in figure 9(b). In the discussion about symmetries in 
52.2 we found that if the turbulent field has the symmetry group (2.14) as the US 
model, then xu,,, is purely imaginary. If this is the case, the phase should be close to 
+90° which is not found at the lowest wavenumbers in figure 9(b). The US+B model 
gives a slightly better prediction of the phase. 

The US tensor model has been tested with other runs from the Great Belt with 
mean wind speeds in the range 12.5 m s-l to 20 m s-’ and with small departures from 
neutral stability in Mann et al. (1991). They used the inertial-subrange lifetime (3.1) 
instead of (3 .6)  and got slightly poorer fits to the one-point spectra but the predicted 
coherences deviated little from the US model with (3.6). 
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TABLE 3. Positions of the instruments of the Lammefjord Experiment. 
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4.3. The Lammefiord Experiment 
The purpose of the Lammefjord Experiment (LAMEX), which ran from the beginning 
of June 1987 to the end of June 1988, was to provide wind data suitable both as 
input for studies of dynamic loads on structures, especially wind turbines, and, as in 
this study, as a basis for the verification and improvement of atmospheric turbulence 
models. Courtney (1988) gives a detailed account for the experiment. 

4.3.1. Description of LAMEX 
The experimental site was located at Lammefjord, a reclaimed, flat-bottomed fjord 

on the Danish island of Zealand. The surrounding land is used for agriculture and 
lies slightly below sea level. Because of difficulties with drainage, no buildings are 
found within 2.5 km in the direction of the prevailing southwesterly winds. In this 
direction the level did not vary more than 1 m. The old sea bed is bounded by a 
drainage canal beyond which the terrain rises steeply with hills up to approximately 
100 m roughly 4 km from the site. The change of roughness 2.5 km upstream of the 
masts will affect the turbulence measurements above - 25 m. 

Three masts were erected in a vertical plane perpendicular to the prevailing south- 
westerly wind direction. Two were 30 m high and the third was 45 m. The positions 
of the anemometers relative to the base of the 45 m mast are shown in table 3. 
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The cup anemometers used were the Riss model 70, which has a distance constant 
of about 1.7 m. At the wavenumbers considered in this study the spectra are unaffected 
by the low-pass filtering by the cups. The omni-directional sonic anemometer at the 
top of the highest mast was a Kaijo-Denki model DAT-300. The sonic signal was 
recorded at 16 Hz and the cups (and some other instruments) were recorded at 8 Hz 
almost uninterrupted for a :year, giving a body of data of approximately 12 Gbytes. 
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FIGURE 11. ‘Goodness’ of the predicted uu-coherences, G, according to (4.8) as a function of vertical 
and transversal separation. At each position (Ay,Az) the left bar refers to the US model while the 
right refers to the US+B model. Bars with G close to 1 represent the best predictions. 

4.3.2. Comparison with LAMEX data 
The Lammefjord experiment is not perfectly suited to test our model since the 

fitting of the one-point component spectra to the model is based on data from the 
sonic 46 m above the ground while the all the other instruments are at lower heights. 

To test our model we have chosen a 10 hour run with mean wind speed around 11 
ms-’ and direction very close to perpendicular to the mast array. The Richardson 
number is between 0 and 0.1 at z = 21 m, estimated from measured velocity and 
temperature profiles. Even though the stratification is perhaps slightly stable it is 
assumed to be sufficiently close to neutral that our model applies. Analysis of more 
data awaits to clarify the dependence of the spatial structure of turbulence on the 
stability. The three measured component spectra and the uw-cross-spectrum are 
shown in figure 10 together with the model fit. Again the models account well for 
the essential features of the spectra. The values of r are smaller compared to the 
Great Belt indicating that the turbulence at the Lammefjord site is more isotropic (see 
table 1). This may be explained by the limited fetch at the Lammefjord site. 

Only instruments from 20 m and above are used to test the model because we 
consider it too crude to assume a linear wind profile from the sonic at 46 m down to 
10 m. 

From the parameters obtained from the fits in figure 10 we have predicted all pos- 
sible coherences between the velocity components of the sonic and the u-components 
measured by the cups. The ‘goodness’, G, of the predicted uu-coherences is shown in 
figure 11 as a function of transversal and vertical separation for both the US model 
and the USfB model. It is seen that the models work well primarily for horizontal 
separations and that the US+B model generally gives slightly better predictions. The 
models predict, by a small amount, too large coherences for vertical separations. The 
consequences for the errors in load calculations on vertical structures depend on the 
shape of the excited modes. If the typical lengthscale of the mode shape is larger 
than the ‘coherence decay length’ the model will predict slightly too high loads. 
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FIGURE 12. uu-coherence (a) and phase ( b )  for a vertical separation Az = 26 m from LAMEX 
(z, = 20 m, z2 = 46 m). The dots are measured coherences, the solid curve is the US prediction, the 
dashed is from the US+B model and the dotted curve is the isotropic inertial-subrange prediction. 
The short-dashed curves in ( b )  are the theoretical 1 - 0 deviations of the phase from the US model 
according to (4.1 1). 

Ay Az G 

(m) (m) US US+B 

20 16 1.9 1.7 
uv 30 16 2.3 1.6 

30 26 2.3 1.9 

0 16 3.3 1.0 
0 26 3.3 1.5 

uw 20 16 2.2 1.2 
30 16 2.0 2.1 
30 26 2.0 1.4 

TABLE 4. ‘Goodness’ of the predicted uu- and uw-coherences, G, according to (4.8) for different 
horizontal and vertical separation, Ay and Az. Predictions with G closest to one are the best 
predictions. 

The success of the uu- and uw-coherence predictions is shown in table 4. For the 
US model the coherences with predominantly horizontal separations again seem to 
be predicted best, but the US+B model seems to be superior to the US model. 

We shall now look at two examples of predicted coherences represented in the bar 
chart in figure 11 and in table 4. The first is the uu-coherence and phase between the 
sonic at 46 m and a cup directly under the sonic at z = 20 m (see table 3) displayed 
in figure 12. This is a quite poor prediction (G = 3.6 for the US model, G = 2.3 
for US+B); the models, especially the US, are seen to overestimate the coherence 
systematically. 

The phase calculated from the same data is shown in figure 12(b), where the 
scatter is estimated using (4.11). A positive 4p here means that the fluctuations at 
z = 20 m come after the fluctuations at z = 46 m. The phase and the scatter are well 



The spatial structure of surface-layer turbulence 165 
1 . 0 [ , . . .  . . . . . . . . . . . . . . . . . . . . .  ~ ~ ~ ~ " " " " " ~ ' " ' " " ' ' J  190 

0.8 I 

0 0.2 0.4 0.6 0.8 1.0 

\ 0 .  . 140 - 
0.. . 

i 

\ 
\ 

0 .  

.. \ 

0.2 0.4 0.6 0.8 1.0 

k, Az k, Az 
FIGURE 13. uw-coherence with w measured at z = 46 m and u at 20 m and with zero horizontal 

separation. See caption to figure 12 for description of symbols. 

predicted at the higher wavenumbers while the phase is underestimated at the lowest 
wavenumbers. The models make quite similar predictions in this case. 

The last example (figure 13) shows coherence and phase predicted significantly 
differently by the two models. The coherence is predicted better by the US+B model 
which has G = 1.5 compared to G = 3.3 for the US model. The measured phases are 
between the two predictions. 

5. Conclusion 
We have investigated two slightly different models of the spectral tensor of neu- 

tral atmospheric surface-layer turbulence which contain only three parameters : a 
lengthscale L, an eddy lifetime constant r and the spectral multiplier in the inertial 
subrange (mi). Both models crudely consider the effect of shear on turbulence by 
using the linearized and inviscid Navier-Stokes equation. The effect of the nonlinear 
terms is taken into account by including considerations about the lifetime of eddies of 
different sizes. The simplest model is the uniform shear model (US) (63.2) while the 
US+B model (53.3) additionally attempts to take into account the effect of blocking 
by the surface. 

We have used two experiments specially designed to measure the spatial structure 
of turbulence to test the models: the Great Belt Coherence Experiment measuring 
turbulence over water and the Lammefjord Experiment (LAMEX), which measures 
turbulence over an almost horizontally homogeneous terrain. 

As mentioned in 62.2, since we have assumed a linear shear, we should only 
expect the spectral tensors to model eddies with sizes smaller than the scale over 
which the shear changes appreciably, which in the surface layer is the height above 
the ground, z .  Because of the three adjustable parameters, however, the fit of the 
model to the one-point spectra is good well below kl = 271/z. From these parameters 
virtually all second-order two point statistics, i.e. coherences, phases etc., are predicted 
satisfactorily from the models. Both models perform less well for vertical separations 
(e.g. figure 12) where the departure from a linear profile might be important. 

There are only small differences in the predictions made by the US and US+B 
models, with the notable exception of coherences involving vertical velocity fluctua- 
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4 / q 2  4 / q 2  d / q 2  - (uw) / q 2  

Panofsky & Dutton (1984) 0.53 0.33 0.14 0.09 
Other data (Maxey 1982) 0.53 0.28 0.19 0.14 
Great Belt 0.54 0.31 0.15 0.11 

US model (G.B. parameters) 0.51 0.30 0.19 0.13 

Model of Maxey (1982) 0.59 0.34 0.07 0.14 
US+B model (G.B. parameters) 0.46 0.34 0.20 0.11 

LAMEX? 0.45 0.35 0.20 0.1 1 

US+B model (LAMEX parameters) 0.44 0.34 0.22 0.11 
US model (LAMEX parameters) 0.47 0.31 0.22 0.13 

t Site is not completely homogeneous. 

TABLE 5. Stress ratios from two references, our two experiment and some models. The parameters 
of the US and US+B models are given in table 1. 

tions where the US+B model is superior. For the predicted phases the situation is not 
that clear (see figures 9b, 12b and 13b). Because the US+B model is more complex 
than the US model we recommend the latter for engineering purposes, except in cases 
where the coherence of vertical velocity fluctuations at low frequencies is of particular 
importance. 

The Great Belt Experiment gives a larger value of the lifetime parameter r than 
LAMEX (see table 1). The most plausible cause of the difference is a change of 
roughness 2.5 km upwind of the LAMEX site as discussed in Q4.3.1 and 4.3.2. 

This paper differs from previous studies of the application of rapid distortion 
theory to homogeneous shear flow (Maxey 1982; Townsend 1976; Lee & Hunt 1989) 
in two respects. Firstly, they do not incorporate 'eddy lifetime' in the spectral tensor 
models. Maxey's (1982) model assumes that shear acts on all scales with the same 
strain, in contrast to our model. This has the consequence that the cross-spectrum 
FuW(kl) in the inertial subrange is proportional to kYa while our model predicts k,' in 
accordance with Wyngaard & Cot; (1972) and that Fw << F, for kl -P 00 in contrast 
to the present models which are isotropic for large k ,  i.e. Fw = iFw for kl + co. 
In relation to this, if the parameters of the model of Maxey (1982) are adjusted to 
fit the observed shear stress ratio - (uw) / q 2  = 0.14 (q2 is 0,' + 0: + 0;) then the 
derived normalized variances of the three velocity components are not well predicted. 
In table 5 normalized variances and shear stresses from homogeneous shear flow 
measurements and models are displayed. It is seen that a closer comparison is found 
than that by Maxey (1982). The model by Maxey (1982) predicts the ratio C,'/CT; to 
be 4.9 while ours gives values in the range 1.4 to 1.7, in better agreement with data. 
The other difference from the previous studies is that we not only use one-point but 
also emphasize two-point statistics such as coherences and phases in our experimental 
validation. 

Finally, it should be noted that we have no formal justification to apply rapid 
distortion theory to stationary and homogeneous flows. The reader may find discus- 
sions of this point elsewhere (Townsend 1976; Maxey 1982; Savill 1987; Hunt & 
Carruthers 1990). The purpose of paper is solely to present the models and make a 
detailed comparison with data. 

7 
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